RefList.Su - . : , , , , , . , , , . , , , . , .

Airfoils and Lift

: , :
1 8 |
Airfoils and Lift

The angle of incidence is measured by the angle at which the wing is attached to the fuselage.

An airfoil is a device which gets a useful reaction from air moving over its surface. When an airfoil is moved through the air, it is capable of producing lift. Wings, horizontal tail surfaces, vertical tails surfaces, and propellers are all examples of airfoils.

Generally the wing of small aircraft will look like the cross-section of the figure above. The forward part of an airfoil is rounded and is called the leading edge. The aft part is narrow and tapered and is called the trailing edge. A reference line often used in discussing airfoils is the chord, an imaginary straight line joining the extremities of the leading and trailing edges.

Angle of Incidence: The angle of incidence is the angle formed by the longitudinal axis of the airplane and the chord of the wing. The longitudinal axis is an imaginary line that extends lengthwise through the fuselage from nose to tail. The angle of incidence is measured by the angle at which the wing is attached to the fuselage. The angle of incidence is fixed --it normally cannot be changed by the pilot. (An exception is the Vought F8U Crusader.)

Bernoulli's Principle: To understand how lift is produced, we must examine a phenomenon discovered many years ago by the scientist Bernoulli and later called Bernoulli's Principle: The pressure of a fluid (liquid or gas) decreases at points where the speed of the fluid increases. In other words, Bernoulli found that within the same fluid, in this case air, high speed flow is associated with low pressure, and low speed flow with high pressure. This principle was first used to explain changes in the pressure of fluid flowing within a pipe whose cross-sectional area varied. In the wide section of the gradually narrowing pipe, the fluid moves at low speed, producing high pressure. As the pipe narrows it must contain the same amount of fluid. In this narrow section, the fluid moves at high speed, producing low pressure.

An important application of this phenomenon is made in giving lift to the wing of an airplane, an airfoil. The airfoil is designed to increase the velocity of the airflow above its surface, thereby decreasing pressure above the airfoil. Simultaneously, the impact of the air on the lower surface of the airfoil increases the pressure below. This combination of pressure decrease above and increase below produces lift.

Lift: Probably you have held your flattened hand out of the window of a moving automobile. As you inclined your hand to the wind, the force of air pushed against it forcing your hand to rise. The airfoil (in this case, your hand) was deflecting the wind which, in turn, created an equal and opposite dynamic pressure on the lower surface of the airfoil, forcing it up and back. The upward component of this force is lift; the backward component is drag.

Pressure is reduced is due to the smaller space the air has above the wing than below. Air cannot go through the wing, so it must push around it. The surface air molecules push between the wing and outer layers of air. Due to the bump of the airfoil, the space is smaller and the molecules must go faster. According to Bernoulli's Law, faster air has lower air pressure, and thus the high pressure beneath the wing pushes up to cause lift.

How Airplanes Fly: A Physical Description of Lift David Anderson

Fermi National Accelerator Laboratory

Batavia IL 60510

[email protected]

& Scott Eberhardt

Dept. of Aeronautics and Astronautics

University of Washington

Seattle WA 91895-2400

[email protected]

Almost everyone today has flown in an airplane. Many ask the simple question "what makes an airplane fly"? The answer one frequently gets is misleading and often just plain wrong. We hope that the answers provided here will clarify many misconceptions about lift and that you will adopt our explanation when explaining lift to others. We are going to show you that lift is easier to understand if one starts with Newton rather than Bernoulli. We will also show you that the popular explanation that most of us were taught is misleading at best and that lift is due to the wing diverting air down.

Let us start by defining three descriptions of lift commonly used in textbooks and training manuals. The first we will call the Mathematical Aerodynamics Description which is used by aeronautical engineers. This description uses complex mathematics and/or computer simulations to calculate the lift of a wing. These are design tools which are powerful for computing lift but do not lend themselves to an intuitive understanding of flight.

The second description we will call the Popular Explanation which is based on the Bernoulli principle. The primary advantage of this description is that it is easy to understand and has been taught for many years. Because of its simplicity, it is used to describe lift in most flight training manuals. The major disadvantage is that it relies on the "principle of equal transit times" which is wrong. This description focuses on the shape of the wing and prevents one from understanding such important phenomena as inverted flight, power, ground effect, and the dependence of lift on the angle of attack of the wing.

The third description, which we are advocating here, we will call the Physical Description of lift. This description is based primarily on Newtons laws. The physical description is useful for understanding flight, and is accessible to all who are curious. Little math is needed to yield an estimate of many phenomena associated with flight. This description gives a clear, intuitive understanding of such phenomena as the power curve, ground effect, and high-speed stalls. However, unlike the mathematical aerodynamics description, the physical description has no design or simulation capabilities.

The popular explanation of lift

Students of physics and aerodynamics are taught that airplanes fly as a result of Bernoullis principle, which says that if air speeds up the pressure is lowered. Thus a wing generates lift because the air goes faster over the top creating a region of low pressure, and thus lift. This explanation usually satisfies the curious and few challenge the conclusions. Some may wonder why the air goes faster over the top of the wing and this is where the popular explanation of lift falls apart.

In order to explain why the air goes faster over the top of the wing, many have resorted to the geometric argument that the distance the air must travel is directly related to its speed. The usual claim is that when the air separates at the leading edge, the part that goes over the top must converge at the trailing edge with the part that goes under the bottom. This is the so-called "principle of equal transit times".

As discussed by Gail Craig (Stop Abusing Bernoulli! How Airplanes Really Fly, Regenerative Press, Anderson, Indiana, 1997), let us assume that this argument were true. The average speeds of the air over and under the wing are easily determined because we can measure the distances and thus the speeds can be calculated. From Bernoullis principle, we can then determine the pressure forces and thus lift. If we do a simple calculation we would find that in order to generate the required lift for a typical small airplane, the distance over the top of the wing must be about 50% longer than under the bottom. Figure 1 shows what such an airfoil would look like. Now, imagine what a Boeing 747 wing would have to look like!

Fig 1 Shape of wing predicted by principle of equal transit time.

If we look at the wing of a typical small plane, which has a top surface that is 1.5 - 2.5% longer than the bottom, we discover that a Cessna 172 would have to fly at over 400 mph to generate enough lift. Clearly, something in this description of lift is flawed.

But, who says the separated air must meet at the trailing edge at the same time? Figure 2 shows the airflow over a wing in a simulated wind tunnel. In the simulation, colored smoke is introduced periodically. One can see that the air that goes over the top of the wing gets to the trailing edge considerably before the air that goes under the wing. In fact, close inspection shows that the air going under the wing is slowed down from the "free-stream" velocity of the air. So much for the principle of equal transit times.

Fig 2 Simulation of the airflow over a wing in a wind tunnel, with colored "smoke" to show the acceleration and deceleration of the air.

The popular explanation also implies that inverted flight is impossible. It certainly does not address acrobatic airplanes, with symmetric wings (the top and bottom surfaces are the same shape), or how a wing adjusts for the great changes in load such as when pulling out of a dive or in a steep turn.

So, why has the popular explanation prevailed for so long? One answer is that the Bernoulli principle is easy to understand. There is nothing wrong with the Bernoulli principle, or with the statement that the air goes faster over the top of the wing. But, as the above discussion suggests, our understanding is not complete with this explanation. The problem is that we are missing a vital piece when we apply Bernoullis principle. We can calculate the pressures around the wing if we know the speed of the air over and under the wing, but how do we determine the speed?

Another fundamental shortcoming of the popular explanation is that it ignores the work that is done. Lift requires power (which is work per time). As will be seen later, an understanding of power is key to the understanding of many of the interesting phenomena of lift.

Newtons laws and lift

So, how does a wing generate lift? To begin to understand lift we must return to high school physics and review Newtons first and third laws. (We will introduce Newtons second law a little later.) Newtons first law states a body at rest will remain at rest, and a body in motion will continue in straight-line motion unless subjected to an external applied force. That means, if one sees a bend in the flow of air, or if air originally at rest is accelerated into motion, there is a force acting on it. Newtons third law states that for every action there is an equal and opposite reaction. As an example, an object sitting on a table exerts a force on the table (its weight) and the table puts an equal and opposite force on the object to hold it up. In order to generate lift a wing must do something to the air. What the wing does to the air is the action while lift is the reaction.

Lets compare two figures used to show streams of air (streamlines) over a wing. In figure 3 the air comes straight at the wing, bends around it, and then leaves straight behind the wing. We have all seen similar pictures, even in flight manuals. But, the air leaves the wing exactly as it appeared ahead of the wing. There is no net action on the air so there can be no lift! Figure 4 shows the streamlines, as they should be drawn. The air passes over the

1 8 |

Airfoils and Lift


Airfoils and Lift

Description of a person and a place
I\'d like to speak about my friend Andrey and his flat. Andrey is fourteen. He lives with his parents not far from our school. Andrey has a lot of hobbies: he likes to play the computer, to read detective stories, to collect matchboxes. He ha
Johann (III) Bernoulli
Born: 4 Nov 1744 in Basel, Switzerland
Died: 13 July 1807 in Berlin, Germany
Johann(III) Bernoulli was a son of Johann(II) Bernoulli. He was certainly considered a prodigy when a child with an encyclopedic knowledge and, like many
Johann(II) Bernoulli
Born: 28 May 1710 in Basel, Switzerland
Died: 17 July 1790 in Basel, Switzerland
Johann(II) Bernoulli was one of three sons of Johann Bernoulli. In fact he was the most successful of the three. He originally studied law and in 1727
Jacob (Jacques) Bernoulli
Born: 27 Dec 1654 in Basel, Switzerland
Died: 16 Aug 1705 in Basel, Switzerland
Jacob Bernoulli\'s father, Nicolaus Bernoulli (1623-1708) inherited the spice business in Basel that had been set up by his own father, first in A
Review of Bill Gatess book Business @ the Speed of Thought
Review of Bill Gatess book Business @ the Speed of Thought
Business is going to change more in the next ten years than it has in the last fifty.
Bill Gates
This book was written in 1999 by Bill Gates, chairman and Chie
' "Գ" : "³ ", "Գ ...





( )